Kronecker type theorems, normality and continuity of the multivariate Padé operator
نویسندگان
چکیده
For univariate functions the Kronecker theorem, stating the equivalence between the existence of an infinite block in the table of Padé approximants and the approximated function f being rational, is well-known. In [Lubi88] Lubinsky proved that if f is not rational, then its Padé table is normal almost everywhere: for an at most countable set of points the Taylor series expansion of f is such that it generates a non-normal Padé table. This implies that the Padé operator is an almost always continuous operator because it is continuous when computing a normal Padé approximant [Wuyt81]. In this paper we generalize the above results to the case of multivariate Padé approximation. We distinguish between two different approaches for the definition of multivariate Padé approximants: the general order one introduced in [Levi76, CuVe84] and the so-called homogeneous one discussed in [Cuyt84].
منابع مشابه
Some (Fuzzy) Topologies on General\ Fuzzy Automata
In this paper, by presenting some notions and theorems, we obtaindifferent types of fuzzy topologies. In fact, we obtain someLowen-type and Chang-type fuzzy topologies on general fuzzyautomata. To this end, first we define a Kuratowski fuzzy interioroperator which induces a Lowen-type fuzzy topology on the set ofstates of a max- min general fuzzy automaton. Also by provingsome theorems, ...
متن کاملTopology coloring
The purpose of this study is to show how topological surfaces are painted in such a way that the colors are borderless but spaced with the lowest color number. That a surface can be painted with at least as many colors as the condition of defining a type of mapping with the condition that it has no fixed point. This mapping is called color mapping and is examined and analyzed in differe...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملOn the convergence of multivariate Padé approximants
While the concept of Padé approximant is essentially several centuries old, its multivariate version dates only from the early seventies. In the last century many univariate convergence results were proven, describing the approximation power for several function classes. It is not our aim to give a general review of the univariate case, but to discuss only these theorems that have a multivariat...
متن کامل